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Abstract 

The convergence of Artificial Intelligence (AI) and embedded systems has revolutionized modern electronic 

engineering, enabling intelligent functionalities in devices with constrained power, memory, and processing resources. 

This review explores the evolution, techniques, hardware platforms, and application domains of embedded AI, 

focusing on advancements such as TinyML, federated learning, and hybrid models. It further categorizes the landscape 

of AI-capable embedded hardware, including microcontrollers, SoCs, FPGAs, ASICs, and modular AI accelerators. 

Real-world deployments across agriculture, healthcare, automotive, IIoT, robotics, and smart cities are discussed, with 

emphasis on privacy-aware, real-time, and energy-efficient implementations. The paper also outlines critical 

challenges such as computational limits, latency, model updates, and security risks. Lastly, it highlights emerging 

trends including neuromorphic computing, self-learning models, cross-platform ML deployment, and hardware-

algorithm co-design, offering a forward-looking perspective on the future of AI in embedded applications. 

 

Keywords: Embedded artificial intelligence; Edge AI hardware; TinyML in embedded systems; AI-enabled 

microcontrollers; Low-power AI design; Real-time AI processing; Neuromorphic computing; Hardware–software co-

design for AI. 

 

1. Introduction 

The convergence of Artificial Intelligence (AI) and Embedded Systems has reshaped the landscape of modern 

electronic engineering, enabling a new class of smart, adaptive, and autonomous devices. Historically, embedded 

systems were engineered to execute predefined tasks under strict constraints related to power, memory, and processing 

speed. However, the rise of ubiquitous sensing, real-time analytics, and the Internet of Things (IoT) has generated an 

increasing demand for on-device intelligence, where decisions can be made locally without reliance on remote servers 

or cloud-based AI engines. 

This need for local intelligence has propelled the integration of AI algorithms particularly machine learning (ML) and 

deep learning (DL) models into embedded platforms. This integration is not merely an enhancement; it is 

transformative. Devices once limited to reactive control can now recognize patterns, anticipate failures, classify sensor 

data, and optimize performance dynamically based on contextual information [1], [2]. 
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One of the most significant enablers of this trend is TinyML, a field that focuses on deploying ML models on 

microcontrollers and small devices [3]. Tools such as TensorFlow Lite Micro, Edge Impulse, and CMSIS-NN provide 

efficient runtime environments that allow neural networks to run on devices with kilobytes of RAM and limited clock 

speeds. These technologies empower embedded systems to perform tasks like speech recognition, gesture 

classification, or fault prediction, all without internet connectivity or high energy consumption [4]. 

 

Another key development is the availability of specialized AI hardware. Platforms such as NVIDIA Jetson Nano, 

Google Coral Edge TPU, STM32H7 with DSP extensions, and Xilinx Zynq FPGAs are designed to accelerate AI 

inference at the edge. These devices combine high-performance computing with low power usage, making them ideal 

for real-time applications in healthcare, agriculture, transportation, and industrial automation [5], [6]. 

 

For example, Supriadi et al. [1] implemented federated learning for predictive maintenance directly on edge devices, 

eliminating the need to transmit sensitive data over the network. Similarly, Blazevic et al. [7] introduced “RaspiCar,” 

a real-time AI-driven autonomous platform capable of running control algorithms safely on embedded systems using 

real-time operating systems (RTOS). These advances highlight the growing maturity of embedded AI systems. 

 

Yet, integrating AI into embedded systems also introduces new complexities. Engineers must address the trade-off 

between model accuracy and latency, optimize memory usage, ensure security, and enable over-the-air (OTA) model 

updates. Rani et al. [2] point out that the increasing use of generative AI for embedded cybersecurity and adaptive 

behavior also raises concerns around model poisoning, adversarial attacks, and trustworthiness in mission-critical 

applications. 

 

Moreover, Montés-Rivera et al. [8] demonstrated how AI algorithms could optimize multi-objective control designs 

in embedded applications by balancing factors like energy efficiency, voltage thresholds, and robustness, using 

evolutionary algorithms on FPGA-based hardware. 

 

This review paper aims to provide a comprehensive synthesis of the field by discussing (1) core AI techniques suited 

for embedded environments, (2) enabling hardware and platforms, (3) application domains with real-world 

deployments, and (4) ongoing challenges and future research opportunities. The objective is to create a bridge between 

AI research and embedded systems engineering, fostering cross-disciplinary collaboration. 

 

2. Overview of AI Techniques for Embedded Systems 

Embedded systems are increasingly integrated with Artificial Intelligence (AI) to enable capabilities such as real-time 

perception, context awareness, predictive control, and autonomous decision-making. However, deploying AI in such 

environments introduces a set of unique challenges related to memory, energy efficiency, and computation latency, 

which has led to the development of optimized techniques such as TinyML, edge inference, and federated learning. 

 

2.1 Tiny Machine Learning (TinyML) 

 

TinyML refers to the deployment of machine learning models on ultra-low-power microcontrollers (MCUs) and 

embedded processors, typically operating in the milliwatt range [9]. It enables intelligent inference on-device, 

eliminating the need for internet connectivity or cloud resources. 

 

Techniques such as quantization, pruning, and knowledge distillation are widely used to compress AI models to fit 

within kilobyte-level memory constraints of embedded MCUs [10]. These optimizations help retain high inference 

speed while minimizing resource usage. 
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TinyML frameworks like TensorFlow Lite Micro, CMSIS-NN, and uTensor provide runtime environments tailored 

for such environments [11]. These toolchains are now commonly used in wearables, smart sensors, and consumer IoT. 

 

2.2 Deep Learning on Embedded Systems 

 

Deep learning (DL), particularly convolutional neural networks (CNNs), has been successfully ported to embedded 

AI platforms using edge-optimized hardware such as NVIDIA Jetson Nano, Google Coral TPU, and Espressif ESP32 

with AI accelerators [12]. 

 

Real-time applications such as object detection, gesture recognition, and speech classification rely on highly 

compressed deep models executed using hardware-accelerated inference engines like TensorRT and TVM [13]. 

In recent work, compressed CNNs and transformers were deployed for real-time environmental monitoring in edge 

devices, showcasing accuracy comparable to server-based models while maintaining real-time response [14]. 

 

2.3 Federated Learning (FL) 

 

Federated Learning allows multiple devices to collaboratively train a global model without sharing their local datasets, 

improving privacy while reducing bandwidth consumption [15]. 

 

In industrial IoT applications, FL-enabled embedded devices perform local training using on-device data and 

periodically share only model updates with a central aggregator [16]. This allows predictive models to improve over 

time across a fleet of devices, even under communication constraints. 

 

Despite its promise, FL introduces challenges in energy usage, model convergence, and non-IID data distributions, 

particularly in embedded environments with limited resources [17]. 

 

2.4 Reinforcement Learning (RL) 

 

Reinforcement Learning (RL) has seen emerging applications in embedded control systems for resource scheduling, 

traffic optimization, and adaptive decision-making [18]. 

 

However, the computational demands of traditional RL algorithms limit their use in constrained hardware. Recent 

works explore lightweight RL agents, such as discrete-state Q-learning and actor-critic methods, tuned for embedded 

systems [19]. 

 

RL is particularly useful in dynamic edge environments where system behavior changes over time (e.g., concept drift), 

enabling continuous adaptation [20]. 

 

2.5 Hybrid and Self-Learning Models 

 

Several embedded AI systems now incorporate hybrid learning architectures, combining techniques like DL + RL or 

FL + supervised learning to enhance adaptability and resilience [21]. 

 

Kargar et al. proposed a self-learning system for concept drift mitigation that updates models on-device using limited 

labeled data and feedback loops critical in unpredictable sensor environments [22]. 

 

These hybrid approaches help mitigate data imbalance, real-time drift, and inconsistent connectivity all common 

challenges in embedded deployment [23]. 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 3, Jul-Sep                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

11 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

A high-level taxonomy of AI in embedded systems is presented in Fig. 1, categorizing the field into hardware 

platforms, AI techniques, and diverse application domains. This structure provides a conceptual foundation for 

understanding the interdependencies across layers of embedded AI design." 

 

 

 

 

 

 

 

 

 

 

 

 

3. AI-Capable Embedded Hardware Platforms 

The success of AI in embedded systems heavily depends on the underlying hardware. Due to constraints such as power 

consumption, compute capacity, form factor, and cost, selecting the appropriate hardware is critical for balancing 

inference performance and system efficiency. This section discusses four primary hardware categories used for 

deploying AI at the edge: Microcontrollers (MCUs), System-on-Chips (SoCs), Field Programmable Gate Arrays 

(FPGAs) and Application-Specific Integrated Circuits (ASICs), and Edge AI modules. 

 

3.1 Microcontrollers (MCUs) 

 

Microcontrollers are ultra-low-power computing units with limited memory and processing capacity, typically found 

in wearables, environmental sensors, and industrial controllers. Modern MCUs like the ARM Cortex-M4/M7, ESP32, 

and STM32H7 now offer DSP extensions, hardware accelerators, and on-chip AI co-processors that enable real-time 

AI inference [24]. 

 

TinyML frameworks such as TensorFlow Lite for Microcontrollers and CMSIS-NN allow lightweight models to run 

on these devices using 8-bit integer quantization [25]. Despite limited performance compared to GPUs or NPUs, 

MCUs offer unparalleled energy efficiency, often consuming less than 1 mW during inference, making them suitable 

for battery-powered AI applications [26]. 

Figure 1. Taxonomy of AI in embedded systems, categorized by hardware platforms, AI techniques, and 

application domains. 
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3.2 System-on-Chips (SoCs) 

 

SoCs integrate CPU, GPU, memory, and peripherals into a single chip, offering a balanced trade-off between power 

and performance. Popular SoCs for AI include: 

• NVIDIA Jetson Nano/Xavier 

• Google Coral Dev Board (Edge TPU) 

• Raspberry Pi 4 with Neural Compute Stick 

 

Jetson Nano offers 128 CUDA cores and can process deep learning models (e.g., YOLOv5) in real time using 

TensorRT optimizations [27]. Coral Dev Boards embed an Edge TPU ASIC capable of performing 4 trillion operations 

per second (TOPS) at just 2W of power [28]. 

 

SoCs are increasingly popular in autonomous drones, robotics, smart cameras, and voice assistants, due to their 

compact form factor and compatibility with AI model toolchains [29]. 

 

3.3 FPGAs and ASICs 

 

FPGAs (Field-Programmable Gate Arrays) offer reconfigurable hardware, ideal for parallelizing AI workloads in real-

time systems. Unlike fixed-architecture processors, FPGAs allow custom AI pipelines, low-latency data handling, and 

tight integration with sensors [30]. 

 

On the other hand, ASICs (Application-Specific Integrated Circuits) are custom-built silicon chips optimized for 

specific AI operations (e.g., matrix multiplication). Examples include: 

• Google’s Edge TPU  

• Apple’s Neural Engine 

• Huawei’s Kirin NPU  

 

ASICs are not reprogrammable but provide maximum performance per watt, making them ideal for production-scale 

deployment in mobile phones, cameras, and automotive systems [31]. 

 

3.4 Edge AI Modules and Coprocessors 

In many embedded applications, AI capabilities are extended via modular add-ons like: 

• Intel Neural Compute Stick 2 (NCS2) 

• Kneron KL720 modules 

• Arduino Portenta Vision Shield 

These modules connect via USB, MIPI, or GPIO, and can offload AI processing from the main microcontroller, 

enabling tasks like object detection, keyword spotting, and gesture recognition [32]. 

Modules like the Kneron KL520 have shown impressive inference performance (0.3 TOPS) while consuming under 

1W, making them suitable for wearables, home automation, and security systems [33]. 

As shown in fig.2, ASICs and FPGAs offer high computational throughput, while MCUs provide ultra-low power 

operation. 
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Hardware Type Performance Power Consumption Flexibility Examples 

MCUs Low <1 mW Moderate STM32H7, ESP32 

SoCs Medium–High 1–15 W High Jetson Nano, Coral 

FPGAs Medium–High 2–10 W Very High Xilinx Zynq 

ASICs Very High <5 W Fixed Edge TPU, Kirin 

Modules Medium 0.5–5 W Plug-n-play NCS2, KL720 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Applications of AI in Embedded Systems 

The integration of AI into embedded systems has unlocked transformative applications across various industries, 

enabling real-time decision-making, autonomous operations, and context-aware intelligence. Below are some of the 

most impactful application domains. 

 

4.1 Smart Agriculture 

Embedded AI plays a critical role in precision agriculture, where resource optimization, crop health, and yield 

prediction are essential. Smart sensor nodes equipped with AI capabilities can detect soil moisture levels, plant stress, 

insect infestations, and disease symptoms on-site without requiring connectivity to cloud servers [34]. 

 

For example, Kumar et al. designed a TinyML-enabled node for crop health classification, achieving 92% accuracy 

using CNN models running directly on ARM Cortex-M microcontrollers [35]. These solutions reduce the cost and 

latency of data transmission and support real-time farming decisions such as irrigation scheduling and pesticide 

delivery. 

 

 

Figure 2: Comparison of AI hardware platforms by performance (TOPS) and power consumption (Watts).  

 

Table 1. Comparison of AI Hardware Platforms for Embedded Systems. 
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4.2 Healthcare and Wearables 

AI-powered embedded systems are revolutionizing personalized healthcare, especially through wearable devices. 

Smartwatches and medical monitors now integrate on-device AI to detect arrhythmia, monitor respiratory patterns, 

and trigger alerts for anomalies such as falls or epileptic seizures [36]. 

 

In one study, Hussain et al. demonstrated that a wearable ECG patch with onboard neural network inference could 

classify cardiac abnormalities with >90% sensitivity in real-time, while consuming less than 10 mW of power [37]. 

Federated learning is also being deployed in healthcare wearables to preserve patient privacy while continuously 

improving model accuracy [38]. 

 

4.3 Automotive and Transportation 

Embedded AI has become indispensable in Advanced Driver Assistance Systems (ADAS) and autonomous driving. 

Applications include: 

• Lane detection 

• Pedestrian recognition 

• Driver fatigue monitoring 

• Collision avoidance 

 

Deep neural networks deployed on hardware like NVIDIA Jetson Xavier are capable of processing HD video feeds at 

the edge, providing low-latency response for real-time path planning [39]. 

 

In lower-cost systems, edge-optimized CNNs are used for driver monitoring and drowsiness detection in embedded 

infotainment systems [40]. 

 

4.4 Industrial IoT (IIoT) 

In smart factories, AI-enabled embedded systems support predictive maintenance, anomaly detection, and robotic 

process automation [41]. 

 

For instance, Ahmed et al. deployed a self-learning AI algorithm in embedded vibration sensors that detected motor 

anomalies up to 36 hours in advance, reducing downtime by 22% [42]. These systems operate fully offline and require 

only milliwatts of power, enabling scalable deployment in harsh industrial environments. 

 

Edge-based federated learning is increasingly used in industrial settings to train models without exposing sensitive 

production data [43]. 

 

4.5 Smart Cities and Infrastructure 

AI-embedded systems in smart cities are used for: 

• Traffic congestion detection 

• Environmental monitoring 

• Noise pollution classification 

• Public safety (CCTV event detection) 
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Systems based on Raspberry Pi and Coral TPU have been deployed for real-time crowd density estimation and air 

quality sensing using TinyML models [44]. These systems enable edge-first city planning decisions without burdening 

cloud infrastructure. 

 

4.6 Robotics and Drones 

In robotics, embedded AI supports real-time path planning, object tracking, and grasp control for mobile and industrial 

robots. Drones use onboard AI for terrain mapping, plant classification, and autonomous navigation [45]. 

 

Blazevic et al. presented a safe, AI-driven robotic control platform called RaspiCar, which performs real-time control 

on an RTOS with embedded vision and reinforcement learning modules [46].  

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Figure 3, Industrial IoT has attracted the highest concentration of research (25%), followed closely by 

Healthcare and Wearables (20%) and Automotive systems (18%). This reflects the critical role of embedded AI in 

predictive maintenance, health monitoring, and autonomous driving. Smart cities, robotics, and agriculture 

collectively account for under 40%, but are fast-growing due to real-time inference needs in unstructured environments. 

5. Challenges and Limitations of AI in Embedded Systems 

Despite the growing adoption of AI in embedded systems, several critical limitations hinder performance, scalability, 

and reliability. These challenges stem from the inherent constraints of embedded platforms and the complexity of AI 

algorithms. This section outlines key technical, operational, and ethical barriers. 

5.1 Limited Computational Resources 

Embedded devices typically operate on low-power microcontrollers with limited CPU speed, memory, and no 

dedicated GPU or NPU. This severely restricts the complexity of AI models that can be deployed on-device [47]. 

 

Figure 3. Research focus distribution across embedded AI application domains, based on analysis of recent 

literature (2020–2025). 
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For instance, deploying even a compact CNN model on an ARM Cortex-M4 processor requires aggressive 

quantization and pruning, which can degrade model accuracy if not done carefully [48]. Additionally, embedded 

environments often lack floating-point units, forcing developers to implement fixed-point arithmetic, which 

complicates development and debugging [49]. 

 

5.2 Power and Energy Constraints 

Power efficiency is paramount, especially for battery-powered systems such as wearables, remote sensors, or drones. 

Running AI inference, particularly deep learning, introduces significant power spikes due to memory access and 

matrix operations [50]. 

 

Studies show that executing a basic inference on a 1-second ECG window using a CNN model can consume up to 

100× more energy than conventional signal processing techniques [51]. Energy-aware design, including dynamic 

voltage scaling, sleep modes, and ultra-low-power hardware accelerators, is required to make AI viable in long-term 

deployments [52]. 

 

5.3 Latency and Real-Time Processing 

Many embedded AI applications require real-time inference, especially in robotics, healthcare, and automotive 

domains. However, AI models often introduce computational delays incompatible with tight response time 

requirements [53]. 

 

For example, object detection on a drone navigating a dynamic environment must occur in under 30 ms to avoid 

collision  a target not achievable with large models or inefficient I/O pipelines [54]. 

 

Latency becomes even more unpredictable in non-deterministic edge operating systems, where task preemption and 

variable sensor input rates cause timing jitter [55]. 

 

5.4 Memory and Storage Limitations 

Typical embedded systems offer RAM in the range of tens to hundreds of kilobytes, limiting the use of memory-heavy 

models such as LSTMs or transformers [56]. 

 

Even with model compression, storing multiple AI models or maintaining state for long time-series data remains a 

bottleneck. Some systems utilize external Flash memory or offload to co-processors, but this introduces 

communication overhead and delays [57]. 

 

5.5 Security and Privacy Risks 

On-device AI can introduce vulnerabilities if models are exposed to model inversion attacks, adversarial inputs, or 

data leakage during federated learning [58]. 

 

In healthcare and smart homes, sensitive data processed on-device may be intercepted or exploited if encryption and 

access control are not implemented rigorously. Lightweight cryptographic protocols compatible with embedded 

hardware are still an area of active research [59]. 
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5.6 Deployment and Maintenance 

Unlike cloud-based AI, embedded AI systems are not easily updatable. Over-the-air updates are complex and not 

always supported, leading to stale models and performance drift over time [60]. 

 

Additionally, real-world environments introduce concept drift, sensor degradation, and hardware variation, which 

make static AI models less reliable [61]. Online learning or self-adaptive models are difficult to implement under tight 

hardware constraints. 

 

To better illustrate the diversity of AI-enabled embedded systems across platforms and applications, Table 2 provides 

a comparative overview of representative studies. It highlights hardware platforms, model types, power consumption, 

and latency characteristics reported in literature [35], [36], [39], [43], [45], [51], [55], 

 

 

 

System / Study 
Hardware 

Platform 

AI Model 

Type 
Application 

Power 

(W) 

Latency 

(ms) 
Reference 

TinyML4Ag STM32 TinyRNN Smart Agriculture 0.5 150 [35] 

EdgeHealth Portenta 1D-CNN Cardiac Monitoring 1.2 80 [36] 

JetsonADAS Jetson Xavier YOLOv3-tiny ADAS / Object Detection 5.0 60 [39] 

IIoT-FedLearn Raspberry Pi 4 FedAvg CNN Predictive Maintenance 3.2 95 [43] 

SecureAI KL520 SoC 
Quantized 

DNN 
Surveillance & Detection 2.0 70 [33] 

WearableECG ESP32 LSTM ECG Classification 0.6 140 [51] 

UAV-Smart Jetson Nano SqueezeNet 
Precision Agriculture 

(Drone) 
4.5 110 [45] 

EdgeRTOS ARM Cortex-M Decision Tree RTOS Latency Control 0.9 40 [55] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparative Analysis of Embedded AI Systems across Application Domains 

Fig. 4 Power vs. Latency Across Embedded AI Systems by Application Domain 

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 3, Jul-Sep                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

18 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

To visually compare performance trade-offs across various AI-powered embedded systems, Fig. 4 plots latency (in 

milliseconds) against power consumption (in watts), with each point representing a distinct implementation. The 

systems are color-coded by application domain, including healthcare, agriculture, robotics, surveillance, and industrial 

IoT. This visual distinction allows readers to quickly identify trends within and across domains. 

It becomes evident that real-time systems such as JetsonADAS and EdgeRTOS offer the lowest latency, albeit with 

varying power demands, while ultra-low-power devices like TinyML4Ag and WearableECG sacrifice speed for 

energy efficiency  a common trade-off in resource-constrained environments. 

Systems deployed in medical monitoring (e.g., EdgeHealth, WearableECG) generally cluster around moderate power 

and latency values, balancing patient safety with wearable constraints. In contrast, AI solutions for industrial and UAV 

applications (e.g., UAV-Smart, IIoT-FedLearn) lean toward higher power usage, reflecting the computational 

demands of edge inferencing in complex scenarios. 

This chart thus highlights the fundamental design trade-offs in embedded AI: achieving lower latency typically comes 

at the cost of increased power draw, and vice versa. These trade-offs are crucial in selecting appropriate hardware-

software stacks for specific domain requirements. 

 

6. Future Directions in AI for Embedded Systems 

With rapid advancements in embedded hardware, edge computing, and machine learning theory, the future of AI in 

embedded systems is evolving toward greater autonomy, adaptability, and efficiency. This section outlines emerging 

research trends and technological directions that aim to overcome current limitations and open new application 

frontiers. 

6.1 Neuromorphic and Brain-Inspired Computing 

Neuromorphic computing emulates the biological structure of the human brain using spiking neural networks (SNNs) 

and event-driven logic. These systems are designed for ultra-low-power, asynchronous, and highly parallel operation 

ideal for embedded AI [62]. 

 

Devices such as Intel's Loihi, IBM's TrueNorth, and BrainChip Akida show promise for on-device continuous learning, 

particularly in robotics, vision, and edge sensory applications [63]. Unlike conventional models, SNNs can process 

spatial-temporal patterns efficiently, enabling real-time responses with power consumption measured in microwatts 

[64]. 

 

6.2 Self-Learning and Continual Learning Models 

A major shift is underway toward self-learning embedded systems capable of adapting to unseen environments and 

concept drift without human supervision. Lightweight continual learning frameworks such as Elastic Weight 

Consolidation (EWC) and Replay Buffer Approaches are being ported to edge devices [65]. 

 

These models are essential in industrial IoT and smart wearables, where environmental dynamics and human behavior 

vary over time. Real-time self-adaptation also reduces the need for frequent retraining or cloud updates [66]. 
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6.3 Cross-Platform and Compiler-Aware ML Models 

As embedded AI systems diversify, model portability across architectures like RISC-V, ARM, and DSPs becomes 

crucial. Recent works explore compiler-aware neural architecture search (NAS) and hardware-specific model 

optimization for seamless cross-platform deployment [67]. 

 

Projects like TVM, TensorRT, and Apache Glow aim to unify model compilation, allowing one model to be 

automatically optimized and mapped to various embedded targets with minimal loss in accuracy [68]. 

 

6.4 Real-Time On-Device Training 

A future direction gaining traction is training models directly on embedded hardware, especially for personalization 

tasks like user behavior modeling, gesture adaptation, or sensor drift compensation. 

 

With improvements in memory management, adaptive learning rates, and low-rank updates, researchers have 

demonstrated prototype systems capable of real-time learning on MCUs and NPUs [69]. While still early-stage, this 

could reduce dependency on cloud retraining pipelines. 

 

6.5 Hardware-Algorithm Co-Design 

Emerging embedded AI research focuses on co-designing hardware architectures and ML algorithms together for 

optimal efficiency. Rather than adapting generic models to resource-limited devices, co-design ensures that models 

are developed with hardware-aware constraints in mind [70]. 

 

Efforts include the use of systolic arrays, quantized accelerators, and event-driven buses that minimize power and 

latency while maximizing throughput for specific AI workloads [71]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Comparison of emerging embedded AI technologies based on estimated maturity and power efficiency. 
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As shown in Fig. 5 Hardware-Algorithm Co-Design leads in both maturity and power efficiency, making it the most 

viable for near-term deployment in embedded systems. Neuromorphic Computing, although in earlier development 

stages, exhibits exceptional energy efficiency, indicating high potential for ultra-low-power applications such as 

autonomous robotics and real-time vision. 

 

 Self-Learning Models and On-Device Training remain in early experimental phases due to hardware and memory 

constraints, while Cross-Platform ML offers a balance of portability and efficiency, making it suitable for 

heterogeneous embedded environments. 

 

7. Conclusion and Future Outlook 

The integration of Artificial Intelligence (AI) in embedded systems is revolutionizing how intelligent functionalities 

are deployed across power- and resource-constrained environments. From real-time object detection in smart cameras 

to autonomous decision-making in industrial robotics, the synergy between AI and embedded hardware has shown 

remarkable progress [72]. This transformation is primarily driven by advancements in AI accelerators, power-efficient 

neural networks, and edge-computing architectures [73]. 

 

Key enabling technologies such as edge AI modules, neuromorphic processors, and AI-specific microcontrollers have 

emerged to meet the latency and energy requirements of real-time inference at the edge [74]. Additionally, the 

development of AI model compression techniques including quantization, pruning, and knowledge distillation has 

played a critical role in optimizing performance within limited hardware budgets [75]. 

 

Despite these advancements, several open challenges remain. These include the need for standardized benchmarking 

metrics for embedded AI, improved model interpretability, and stronger hardware-software co-design tools that can 

accommodate rapidly evolving deep learning models [76]. Furthermore, security and reliability concerns especially 

in safety-critical applications such as healthcare and autonomous vehicles demand robust fail-safe mechanisms and 

trustable AI decisions [77]. 

 

Looking ahead, the field is expected to move toward greater autonomy, adaptability, and on-device learning. Trends 

such as federated learning, AIoT (AI + IoT), and self-learning embedded models are likely to redefine the next decade 

of smart devices [78]. We also anticipate more widespread adoption of open-source toolchains and cross-platform 

AI compilers, which will democratize embedded AI development and lower entry barriers for engineers and 

researchers alike [79]. 

 

In conclusion, embedded AI stands at the intersection of efficiency and intelligence. As the hardware continues to 

shrink and models grow more efficient, we move closer to realizing the vision of ubiquitous, context-aware 

intelligence embedded seamlessly into our physical environments [80]. 
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